Generalized Colourings (Matrix Partitions) of Cographs
نویسنده
چکیده
Ordinary colourings of cographs are well understood; we focus on more general colourings, known as matrix partitions. We show that all matrix partition problems for cographs admit polynomial time algorithms and forbidden induced subgraph characterizations, even for the list version of the problems. Cographs are the largest natural class of graphs that have been shown to have this property. We bound the size of a biggest minimalM -obstruction cograph G, both in the presence of lists, and (with better bounds) without lists. Finally, we improve these bounds when either the matrix M , or the cograph G, is restricted.
منابع مشابه
Colourings, homomorphisms, and partitions of transitive digraphs
We investigate the complexity of generalizations of colourings (acyclic colourings, (k, `)colourings, homomorphisms, and matrix partitions), for the class of transitive digraphs. Even though transitive digraphs are nicely structured, many problems are intractable, and their complexity turns out to be difficult to classify. We present some motivational results and several open problems.
متن کاملMatrix Partitions of Split Graphs
Matrix partition problems generalize a number of natural graph partition problems, and have been studied for several standard graph classes. We prove that each matrix partition problem has only finitely many minimal obstructions for split graphs. Previously such a result was only known for the class of cographs. (In particular, there are matrix partition problems which have infinitely many mini...
متن کاملCounting Partitions of Graphs
Recently, there has been much interest in studying certain graph partitions that generalize graph colourings and homomorphisms. They are described by a pattern, usually viewed as a symmetric {0, 1, ∗}matrix M . Existing results focus on recognition algorithms and characterization theorems for graphs that admit such M -partitions, or M partitions in which vertices of the input graph G have lists...
متن کاملList Partitions
List partitions generalize list colourings and list homomorphisms. Each symmetric matrix M over 0; 1; deenes a list partition problem. Diierent choices of the matrix M lead to many well-known graph the-oretic problems including the problem of recognizing split graphs and their generalizations, nding homogeneous sets, joins, clique cutsets, stable cutsets, skew cutsets and so on. We develop tool...
متن کامل(Nearly-)tight bounds on the contiguity and linearity of cographs
In this paper we show that the contiguity and linearity of cographs on n vertices are both O(log n). Moreover, we show that this bound is tight for contiguity as there exists a family of cographs on n vertices whose contiguity is Ω(log n). We also provide an Ω(log n/ log log n) lower bound on the maximum linearity of cographs on n vertices. As a by-product of our proofs, we obtain a min-max the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005